BuildCV Documentation
Our platform provides a visual node-editor interface that simplifies the process of building custom OpenCV algorithms. By connecting pre-built blocks (nodes), users can create powerful image processing pipelines with minimal coding. The platform supports real-time previews, dynamic parameter adjustments, and seamless integration of multiple algorithmic steps.
Getting Started
1. Image URL
- Purpose: Accepts Image URL as the starting point for the pipeline
- Inputs: None (initial Node)
- Output: Original Image
2. Preview Grayscale
- Purpose: Converts the input image to grayscale.
- Inputs: Original image.
- Outputs: Grayscale image.
- UI Elements: None (conversion is automatic).
- Preview: Displays the grayscale image.
3. Gaussian Blur
- Purpose: Applies Gaussian blur to smooth the input image.
- Inputs: Grayscale or original image.
- Parameters: Kernel Size (3x3, 5x5, etc.), Sigma (intensity of blur)
- Outputs: Blurred image.
- UI Elements: Dropdown for kernel size, Slider or input field for sigma value.
- Preview: Displays the blurred image.
4. Threshold
- Purpose: Applies a thresholding operation to the input image.
- Inputs: Grayscale image.
- Parameters: Threshold Value, Maximum Value, Type (BINARY, BINARY_INV, TRUNC, TOZERO, TOZERO_INV)
- Outputs: Thresholded image.
- UI Elements: Slider or input field for threshold and max values, Dropdown for threshold type.
- Preview: Displays the thresholded image.
5. Edge Detection
- Purpose: Detects edges in the input image using selected methods.
- Inputs: Grayscale or processed image.
- Parameters: Method (Sobel, Canny), Threshold1 (lower), Threshold2 (upper)
- Outputs: Edge-detected image.
- UI Elements: Dropdown for method, Sliders or input fields for thresholds.
- Preview: Displays the edge-detected image.
6. Output
- Purpose: Provides the final processed image for download or further use.
- Inputs: Any processed image.
- Outputs: None (end of pipeline).
- UI Elements: Download button.
- Preview: Displays the final image.
Building a Workflow
Input
- Drag the Input Image URL node onto the canvas.
- Enter the image URL or upload a file to initialize the pipeline.
Add Processing Nodes
- Connect the output of the Input Image URL node to a Preview Grayscale node.
- Add a Gaussian Blur node and configure parameters:
- - Kernel size
- - Sigma
- Insert a Threshold node to apply a binary threshold.
- Use an Edge Detection node to highlight edges with methods like Sobel or Canny.
Finalize with Output
- Connect the last processing node to the Output node.
- Preview and download the final image.